Browsing trends of white-tailed deer (*Odocoileus virginianus*) and impacts on Atlantic white cedar restoration

Jacqueline D. Roquemore¹, David Norris², and Robert B. Atkinson¹

¹Center for Wetland Conservation at Christopher Newport University and ²Virginia Department of Game and Inland Fisheries

Atlantic white cedar (AWC) natural history

- grows in monotypic stands
- found in Coastal Plain swamps
- native range from
 southern Maine to
 northern Florida
- considered a globally threatened ecosystem

Historical and existing impacts

- logging
- hydrologic alteration
- conversion to agriculture

□ urgent need for restoration

AWC restoration

- often involves planting of AWC seedlings
- attempts to increase seedling success
 - reduce competing vegetation
 - decrease herbivory

White-tailed deer (Odocoileus virginianus)

- highly abundant mammal in North America
- □ herbivore
 - browser
 - eats tips off twigs and shrubs
 - feeds on seasonally available vegetation
 - in winter feeds on buds and twigs of woody vegetation

Problems associated with herbivory

□ deer browse

- causes changes in stem morphology
- reduces growth
- can result in tree mortality
- deer influence success and type of species found in a forest (Van Deelen et al., 1996)

White-tailed deer (Odocoileus virginianus)

- commonly found on restoration sites
- preferred habitat
 - forests
 - swamps
 - open brushy areas nearby

Removal of competing vegetation

- competitor removal creates patchy habitat preferred by deer
- □ a regeneration study of northern red oak (*Quercus rubra*) identified effects of competitor removal and deer browse
 - in uncut plots
 - □ mortality was low
 - □ growth was poor
 - in clear-cut plots
 - □ mortality was high
 - □ surviving seedlings exhibited good growth
 - clear-cutting leaves target species in a vulnerable state, becoming a more likely food choice

Exclusion fencing not feasible

in a comparison of electric fences, tree shelter tubes, wire mesh cages, and tall fences in a Pocosin Lakes NWR restoration project, none of the exclusion devices were found to be economically feasible for large planting areas (Hinesley et al., 2003)

Chemical deterrent

- □ capsaicin
 - from plants in the genus *Capsicum*
 - active product in chili powders
 - irritant to mammals
 - lasts approx. 30 days
 - does not protect new growth
- Capsaicin based repellents reduced twig consumption on ornamental plantings in Colorado (Andelt et al., 1994)

Virginia Department of Game and Inland Fisheries (DGIF) goals for AWC

- restoration of a
 globally threatened
 habitat (AWC) and
 accompanying
 wetland function
- create contiguous
 block of habitat
 connected to Great
 Dismal Swamp

Purpose of the study

□ for DGIF restoration site

- quantify impact of browse pressure on planted AWC seedlings
- identify seasonal trends in browse
- determine optimal timing of chemical deterrent application in order to most effectively allocate resources

Project design and monitoring

- project was designed by DGIF
- students
 volunteering
 through the Center
 for Wetland
 Conservation at
 CNU provided
 field monitoring
 and analysis

Location of restoration site

- •Approximately 8 km east of Great Dismal Swamp
- •Within historical range of Atlantic White Cedar

Restoration plans

Site Description

- □ 22 hectares
- □ former cutover forest land
- peat soils
- □ prepared for planting:
 - herbicide application in August 2007
 - drum chopping in fall 2007
- 70,000 AWC seedling planted
 - Feb 2008
 - 6 ft centers

Methods

- fencing was placed around 25 individual trees
- □ wire fencing
 - 1.5m tall
 - 0.75m in diameter
 - 2"x4" mesh
- closest tree of similar initial condition was tagged

Methods

- plots established in May 2008 by DGIF and initial measurements recorded
- monitoring parameters
 - height
 - width
 - browse index
 - □ each tree was scored 1-5
 - $\square \quad 1 = \text{no browse}$
 - 5 = most intense browse
- monitoring occurred
 - October 2008
 - November 2008
 - January 2009

Less mortality when deer were excluded

•Highest mortality occurred between May and October

•In general, trees that survived from May to October were still alive in January

•24% of fenced trees were dead compared to 48% of unfenced trees

Many seedlings were completely uprooted

Tree height

Tree width

Browse intensity

•Browse intensity consistent across the monitoring periods

*Greater browse intensity on unfenced trees when compared to fenced trees in January (p=0.002)

Results summarized

- □ when deer were excluded
 - 24% less mortality
 - in October 16.5 cm taller
 - in October 20 cm wider
- □ timing of browse
 - deer exclusion in January decreased browse intensity

Discussion

- □ AWC mortality may have been increased by competitor removal (initial herbicidal application and clear cutting)
- □ reducing deer browse is beneficial to restoration efforts
 - mechanical exclusion
 - not economically feasible and not being considered
 - use of chemical deterrent
 - □ likely to be used by DGIF at this restoration site
 - application between May and October could decrease mortality
 - application between October and January could increase growth
 - reduction of deer population
 - DGIF supports recreation hunting on the property

Further study

- ongoing monitoring
 - once a month
 - larger sample size
- timing of herbicidal application in future restoration sites
- investigate deer impact on seedlings prior to root establishment (in months just after planting)
- proximity to forest edge

Acknowledgements

- CNU BCES department
- K. Taylor Beard, Glenn S. Boutillier, C. Grace Bowles, Holly E. Kopecky, Joe C. Regan, and W. Tyler Warren

Literature Cited

- □ Andelt, W. F, K. P. Burnham, and D. L. Baker. 1994. Effectiveness of capsaicin and bitrex repellents for deterring browsing by captive mule deer. *The Journal of Wildlife Management*. 58(2): 330-334.
- Buckley, D. S., T. L. Sharik, and J. G. Isebrands. 1998. Regeneration of norther red oak: Postive and negative effects of competitor removal. *Ecology*. 79(1): 65-78.
- Hinesley, E. L., S. A. Derby, and M. Wicker. 2003. Protecting newly established atlantic white cedar and bald cypress with electric fences, treeshelter tubes, wire mesh cages, and tall fences. *Atlantic White Cedar Restoration Ecology and Management, Proceedings of a Symposium, May* 31-June 2, 2000, Christopher Newport University, Newport News, VA.
- □ Van Deelen, T. R, K. S. Pregitzer, and J. B. Hauffler. 1996. A comparison of presettlement and present-day forest in tow northern Michigan deer yards. *The American Midland Naturalist*. 135(2): 181-135.

Questions

Impacts of deer browse on forest vegetation

- research in northern Michigan
- coniferous swamps—northern white cedar (*Thuja* occidentalis)
 - compared forest composition
 - presettlement (lower deer populations)
 - present-day (higher deer populations)
 - forest species compositions have changed because of deer
 - species that are palatable to deer and intolerant to browse have decreased over time
 - mature cedar stands were established in a period of low deer population
 - deer influence success and type of species found in a forest

(Van Deelen et al., 1996)