Regenerative Stormwater Conveyance and Integrated Stream and Wetlands Ecosystem Restoration

Problems

- Traditional Stormwater Management
- Legacy Sediments
- Incorrect Models

RELATIONSHIP BETWEEN IMPERVIOUS COVER AND SURFACE RUNOFF

Impervious cover in a watershed results in increase surface runoff.

As little as 10 percent impervious cover in a watershed can result in stream degradation.

Forest Cover in the Chesapeake Bay Watershed: 1650 - 2000

Fig. 3. Streams throughout the mid-Atlantic region (see also figs. S1 and S2) have similar characteristics: vertical to near-vertical banks consisting of 1 to 5 m of laminated to massive fine-grained sediment overlying a Holocene hydric soil and a basal gravel overlying bedrock. (**A**) Western Run, Maryland. (**B**) Big Spring Run, Pennsylvania. Scale bars in (A) and (B) are marked in 0.5-m increments; the banks in (A) and (B) are ~2.2 and ~1.4 m high, respectively. (**C**) Conceptual model based on composite stratigraphy from multiple sites, including stream-bank exposures, trenches, and cores.

Carriage Hills Previous Condition -Construction Began December 2009

Glen Oban

Basic Building Blocks

Regenerative Stormwater Conveyance

COASTAL PLAIN OUTFALL N.T.S.

Riffle Pool Profile Section

Proposed RSC Design

Coastal Plain Outfalls

- dissipate existing stormwater discharge energies
- provide in-situ water quality treatment
- manage stormwater quantities insitu
- use natural material native to the coastal plain
- can be designed with public access for educational purposes
- re-establish a natural, aesthetically pleasing, self-sustaining coastal plain stream valley

The Restoration Plan

- Technique
 - Placement of network of sand berms
 - Creation of "moat" along toe of slope
 - Creation of sand and woodchip substrate
 - Step pool reach with ferracrete/limonite

- Purpose
 - Facilitates formation of seepage gradient
 - Supports lateral seepage through sand berms
 - Establish soil to support AWC
 - Transition to off-site incised channel

The Restoration Plan

- Technique
 - Raise channel invert with quartz cobble
 - Controlled water surface elevations with cobble weirs
 - Ponded stream reaches dissipate energy and trap sediments

- Purpose
 - Raise groundwater table to support wetland hydrology
 - Provide head to support seepage through substrate
 - Support accretion of sediment and development of peat

Bishopville Pond – Fish Passage

Hydrographs during individual storms HOWARD'S BRANCH

Source: Solange Filoso, University of Maryland

Figure 32. Percent load reduction of TN in the restored reach of Howard's Branch during five different storm events.

Figure 34. Percent load reduction of TSS in the restored reach of Howard's Branch during five different storm events.

Source: Palmer and Filoso, 2009

Hydrographs during individual storms WILELINOR

Source: Solange Filoso, University of Maryland

GUIDANCE FOR NATIONAL POLLUTANT DISCHARGE ELIMINATION STORMWATER PERMITS

JUNE (DRAFT) 2011

1800 Washington Boulevard Baltimore, MD 21230-1718 | www.mde.state.md. 410-537-3000 | 800-633-6101 | TTY Users: 800-735-2258 MARTIN O'MALLEY, GOVERNOR | ANTHONY G. BROWN, LT. GOVERNOR | ROBERT M. SUMMERS,

승규가에 상품에 사용과 에 승규가에 승규가 이 승규가 이 수 있다.

Table 4. Structural BMP Retrofit Matrix

BMP Practice	TN	TP	TSS
CBP Structural BMPs		Participation (
Dry Detention Ponds	5%	10%	10%
Hydrodynamic Structures	5%	10%	10%
Dry Extended Detention Ponds	20%	20%	60%
Wet Ponds and Wetlands	20%	45%	60%
Infiltration Practices	80%	85%	95%
Filtering Practices	40%	60%	80%
Vegetated Open Channels	45%	45%	70%
Erosion and Sediment Control	25%	40%	40%
Stormwater Management by Era		A STORAGE S	
Development Between 1985 - 2002	17%	30%	40%
Urban BMP Retrofit	25%	35%	65%
Development Between 2002 and 2010	30%	40%	80%
Development After 2010	50%	60%	90%
ESD to the MEP from the Manual	activity and a second	and the start	The section of the
Green Roofs	50%	60%	90%
Permeable Pavements	50%	60%	90%
Reinforced Turf	50%	60%	90%
Disconnection of Rooftop Runoff	50%	60%	90%
Disconnection of Non-Rooftop Runoff	50%	60%	90%
Sheetflow to Conservation Areas	50%	60%	90%
Rainwater Harvesting	50%	60%	90%
Submerged Gravel Wetlands	50%	60%	90%
Landscape Infiltration	50%	60%	90%
Infiltration Berms	50%	60%	90%
Dry Wells	50%	60%	90%
Micro-Bioretention	50%	60%	90%
Rain Gardens	50%	60%	90%
Grass, Wet, or Bio-Swale	50%	60%	90%
Enhanced Filters	50%	60%	90%
Additional Structural BMP Guidance		1000 (A 170)	
Redevelopment (MDE)	50%	60%	90%
Existing Roadway Disconnect (MDE)	50%	60%	90%
Step Pool Storm Conveyance (MDE)	50%	60%	90%