
Radial Growth of AWC 
in Great Dismal Swamp National Wildlife Refuge 

and its Association with Lake Drummond Water Levels

by Craig Lee Patterson

presented by 
Rob Atkinson



Amy Seim (2005) on Red Maple and 
Shana Merry (2005)  on AWC
collect tree cores after Isabel;

Seim et al. (2006)
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Presentation outline

History
Methods
Results/Discussion
Application: can tree rings 
predict ecosystem services?



4

History



Cedar in History

•Cedar is endangered in the northeast (Kalm, 1748).

•Washington Ditch is dug and cedar becomes a major export crop 

from Great Dismal Swamp (1760s)

•Dismal Swamp Canal is dug and 

facilitates drainage of GDS (1805)
19501760’s

Washington Ditch
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Solution: pair technology and ecological understanding
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Historical overview of AWC in GDS





Circa 

6000 B.P.



Circa 

3500 B.P.

>2 feet 1000 years?

If we lost 4 feet, maybe 
2,000 years worth.

~100,000 acres with 
deep peat deposits, so 
its back to work!



Early image of 
Atlantic White Cedar 
in Great Dismal Swamp

“Showing the fine Juniper 
(White Cedar) 

Timber on the holdings 
of John L. Roper 

Lumber Company in the 
Great Dismal Swamp of 

Virginia and North Carolina.  
About 60,000 acres 

in this body.”
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Recent satellite image 
showing AWC stands 

(darker images)
Totaling 

a few thousand acres



Hurricane Isabel 9/18/03



Damage from Hurricane Isabel
aerial photograph provided by B. Martin



Atlantic White 
Cedar 

salvage logging 
plan 

for GDS



Perturbation: natural event with which most inhabitants 
evolved and that causes the temporary loss of the climax 
plant community.
Disturbance: human‐induced event that may cause 
relatively permanent loss of the climax community if the 
event isn’t similar to a perturbation.

Key: fire is a perturbation 
unless water tables are unnaturally low
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Opportunity provided by 
Hurricane and salvage-logging



Cookie collection 
locations in GDSNWR

• Previous CNU studies 
of AWC tree rings 
were conducted in 
two stands (yellow 
circles)

• In this study, 11 
stands were sampled            
(green circles); and   
5 were subsequently 
burned.
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Purpose

• The objective of Craig’s study was to:

utilize dendroclimatic analyses to determine 
the association between AWC radial growth 
and temperature, precipitation, and drought 
index and Lake Drummond water levels in 
GDSNWR
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Methods
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AWC salvage logging areas
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AWC salvage logging areas
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Stem-cut extraction
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Measurement 
and Cross-dating

• Sanding

• 4 or 5 radial-growth 
series/ tree

• Assign calendar years

• Visual cross-dating

• Measure ring widths

• 105 ring-width series

• Program COFECHA to 
ensure cross-dating and 
measurement accuracy
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Program ARSTAN

• Program ARSTAN was used to remove as much non-climatic 
variation as possible from each ring-width series to maximize the 
climate signal (ring-width variation common to all trees)

First detrending to remove variation attributable to tree age

Second detrending to remove variation attributable to competition

Autoregressive modeling to remove persistence

Calculation of the RESID chronology

• Standard procedures for forested sites in the eastern US
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Ring-width measurement and RESID chronologies
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RESID chronology quality

• Chronology interval was 1919 through 2003

• SNC Measure of climate-signal strength (COFECHA) 0.644

• RBAR  Measure of common variance between ring-
width index series that comprised the RESID
chronology (ARSTAN) 0.403

• EPS Estimate of the degree to which RESID accurately
represented the true chronology
(ARSTAN, function of RBAR and sample size) 0.986
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Palmer Drought Severity Index

• PDSI calculation is essentially a soil moisture budget

• PDSI values are a function of soil and weather variables and 
represent relative soil wetness and dryness

• Monthly, regional value

• North Carolina Climate Division 8, northern Coastal Plain 
(northeast NC)

• Available from 1895

• Positive values indicate moist conditions

• Negative values indicate dry conditions
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Precipitation and temperature

• Precipitation data:

total monthly precipitation

Wallaceton Lake Drummond, VA (less than 10 km from all 
salvage areas)

• Temperature data:

mean monthly temperature (daily average, high, and low)

Elizabeth City, NC (less than 39 km from all salvage areas)

• Temperature and precipitation data available from 1931
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Climate-radial growth analyses

• Simple linear correlation analysis was used to:

Determine the extent to which indices of the RESID 
chronology varied with monthly climatic values

Identify months, seasons, and climatic variables most 
influential to growth

• Multiple linear regression analysis was used to:

determine the combination of monthly temperature, 
precipitation, and PDSI variables that accounted for the 
greatest amount of ring-width variability
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Climate-radial growth analyses

• Program SYSTAT

• Correlations were calculated over a 24-month climate window 
from previous-year January through current-year December

• Two-tailed hypothesis testing was used

• Significance level for all analyses was 95%  (α = 0.05)
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Results
and 

Discussion
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Correlations between RESID and precipitation
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Will my tomatoes grow better 
next year if I water this year?



Precipitation is a messy parameter.
PDSI is better.
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Correlations between RESID and PDSI
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Lake Drummond



Staff gauge at the Feeder Ditch
Monthly water level data available since 1926

Photo May 2002, courtesy of Norfolk District, Corps of Engineers
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Correlations between RESID and Lake Drummond
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Looking beyond climate signals



Alligator River  NWR

Great Dismal Swamp NWR

CNU

60-year old Atlantic White Cedar 
sites in 

the Great Dismal Swamp and 
Alligator River refuges
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Correlations between RESID and PDSI in ARNWR
Merry (2005)
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AWC grows slower under very poorly drained conditions 
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Application
Can tree rings predict these ecosystem services:

Self-maintenance: regeneration after fire
Carbon sequestration: in peat cores

Nutrient retention and Mercury retention
Wildlife: birds, amphibians, reptiles and mammals



Craig reported that salvage‐
logging unit HN/HS exhibited the 
narrowest rings.

The area had some of the lowest 
PIV (Dark Blue circles)...

...and least severe fire!
Conclusion: best candidate for 
self‐maintenance.



Carbon Sequestration





  Mass of carbon lost as carbon dioxide over the 42-day concurrent 
treatment comparingf the usual field hydrology condition during the 

growing season (*) and the alternate condition.
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Nutrient retention and 
Mercury retention

both reduced by high water tables

But what about biodiversity?



AR-M

Hardwood/
Pine forest

DS-M and DS-I

PL, Comp1 
and Comp2

PCA: Birds (Hester 2003)
Small circles represent study plots.  
Plots with similar species composition 
occur nearer to each other on PCA graphs.



PCA: Amphibians, reptiles, & mammals

Alligator 
River

Dismal 
Swamp



Can higher water levels fix 
the Greek financial crisis?
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Summary

By indicating longer-term hydrographs, 
tree rings may predict many of peatland functions 

known to be guided by hydrology. 
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Their commitment to this ecosystem 
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Thank you



Implications for Future Research
• This summer we hope to retrieve cookies from salvage‐
logging that burned last fall.
– AWC pollen records date back 6,500 years in GDS and we hope 
to

• Contrast Craig’s recent ring width findings with older AWC
• Establish a continuous chronology that would demonstrate 
pre‐ditch ring widths

• This fall we will hear from an NSF proposal that would 
allow us to work with 
– Dr. Aimlee Laderman in the northeast and John McCoy in 
Louisiana to tie ring widths to historic water table depths and

• Risk of seed bank loss and elimination of AWC in event of 
fire.

• Carbon condition/potential C emissions from peat.
• Risk of Mercury export from peat.
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AWC-stand hydrology in GDSNWR

• Water table elevation is highest in March, April, and May

• Growing-season soil moisture content is most stable during this time

• As temperature and evapotranspiration increases, drawdown of the water 
table below the root zone occurs

• In summer and autumn, water table fluctuates in and out of the root zone in 
response to precipitation and evapotranspiration

• Growing-season soil moisture content is most variable in summer and 
autumn; rainfall is also most variable at this time of year 
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Current-year summer and autumn soil moisture

• These results indicate that high root-zone soil moisture content in current-
year summer and autumn enhanced AWC radial growth

• These results are more typically associated with mesic sites than wetlands

• Even in spring, there was little evidence that root-zone soil moisture 
content was excessive to the extent that annual radial growth was limited

• In GDSNWR, duration of soil saturation in the root zone during the 
growing season is usually short

• Further evidence that drainage has led to a progressive drying of GDS  
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Comparison of GDSNWR and ARNWR models

• Correlation results depicting the soil moisture response of AWC in 
GDSNWR and ARNWR represent models from which comparisons with 
future studies can be made

• AWC stands in ARNWR are reference sites for peatland AWC restoration

• The ARNWR model represents the soil moisture-radial growth response 
from a site with a hydrologic regime conducive to AWC self-maintenance

• The GDSNWR model represents the soil-moisture-radial growth response 
from stands with a hydrologic regime less favorable for AWC

• These models can help with interpreting correlation results from relict 
AWC in GDS and evaluating the performance of AWC restoration sites
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Site selection for AWC restoration

• Self-maintaining AWC stands are often characterized by low rates of radial 
growth due to a high and stable water table and / or high stem density

• These conditions are less favorable to germination and growth of hardwood 
species and decrease the likelihood of fires consuming surface peat

• High rates of radial growth may be indicative of low stand density and / or 
a low and fluctuating water table

• Are there significant differences in AWC radial growth in GDSNWR 
stands?

• Significantly smaller ring widths in salvage areas 2 and 11
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AWC restoration
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Important findings

• AWC radial growth in GDSNWR is sensitive to soil moisture in summer 
and autumn of the previous year and current year

• A relatively strong negative correlation between previous-year soil 
moisture and ring width is an uncommon result, but it appears to be a result 
shared by the few AWC radial-growth studies that have been completed 

• Differences in growth allocation, carbon storage, shoot growth, and nutrient 
dynamics in wet and dry years may have a strong influence on peatland 
AWC radial growth

• Positive correlations between current-year soil moisture may be indicative 
of a hydrologic regime not conducive to peatland AWC self-maintenance

• The GDSNWR and ARNWR soil moisture-radial growth models should be 
very helpful in future tree-ring studies and restoration efforts
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Implications

• And HN had the 
smallest ring widths 
in spite of having 
generally higher soil N 
content.
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Lastly

• CWC will be 
addressing the effect 
of new water control 
structures on 
vegetation and 
potential carbon 
emissions.

• Thank you
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Atlantic White Cedar stand in Great Dismal 
Swamp (Pre‐Isabel)
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Feasibility

• Effective tree-ring studies require 
species that are climate sensitive 
and sites in which environmental 
conditions vary annually 

• Sequences of wide and narrow 
rings are often indicative of 
climate sensitivity and annual 
variation of growth conditions

• Closed-canopy, forested sites 
where ground water influence is 
strong and climate is warm and 
humid may produce little ring-
width variation
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Carbon storage

• Most early-season (earlywood) growth that occurs in the lower stem is 
dependent on carbon stored from the previous year, as carbohydrates 
produced in the spring primarily support crown and upper-stem growth

• Dry conditions in summer or early autumn can slow aboveground growth, 
limit demand for carbohydrates, and initiate net carbon storage earlier than 
normal

• Reduced aboveground growth and carbon demand results in an increase in 
carbon reserves available to support radial growth in the following year

• Conversely, extended favorable conditions in summer and early autumn can 
prolong aboveground growth and increase demand for stored carbon, 
resulting in less carbon availability in the following spring
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Shoot growth

• Differences in shoot growth during dry and wet years can also influence 
carbon storage

• During dry periods, conifers tend to shed leaves in order to reduce 
respiration costs and preserve stored carbon

• Peaks in litterfall corresponding with dry periods have been observed in 
AWC stands in GDSNWR

• Conversely, crown expansion during a favorable summer and autumn may 
subject trees to increased transpiration and respiration costs in the 
following year if conditions are unfavorable, limiting radial growth 
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Nutrient dynamics

• All available accounts from AWC stands in GDSNWR suggest that decay 
of soil organic matter in the root-zone is not limited by dry conditions

• However, during dry periods, most mineralized nutrients are immobilized 
by microorganisms, limiting nutrient release and plant uptake

• In the absence of precipitation, immobilized nutrients may not be returned 
to soil solution until the microbial biomass dies and decays in winter

• Turnover of fine roots and increased leaf fall during dry conditions, plus 
turnover of microbial biomass and return of the water table to the root zone 
in winter, may result in a relatively high soil nutrient pool in following 
spring 
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Previous-year October temperature
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Current-year summer PDSI
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Current-year September rainfall
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AWC radial growth in GDSNWR

• Biweekly diameter growth measurements of AWC by Day (1985) indicated 
that most growth occurred from mid-April through June

• This result is probably typical of most years because soil moisture content 
appears most favorable for growth in spring and early summer

• However, radial growth is indeterminate and is very responsive to soil 
moisture availability throughout the growing season

• Delay or absence of summer drawdown results in an extended period of 
earlywood growth and thus a wide annual ring

• Development and persistence of dry conditions through summer and 
autumn slows earlywood growth and may initiate latewood formation, 
resulting in a narrow ring
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Significant correlations

• A significant correlation suggests that a climatic factor or related site factor 
varied sufficiently during a given month throughout much of the study 
period to reduce or enhance radial growth

• Most important climatic variables: previous-year August PDSI, previous-
year October temperature, and current-year September rainfall

• Associated with root-zone soil moisture availability in late summer and 
early autumn

• This suggests that soil moisture in spring was relatively consistent and 
conducive to AWC radial growth in GDSNWR, while soil moisture in 
summer and autumn was variable and potentially limiting during much of 
the study period
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Previous-year October temperature

• Consecutive negative correlations with temperature often coincide with 
periods of water stress

• The trend of negative correlations observed here corresponded with the 
annual drawdown of the water table through late summer and autumn in 
GDSNWR and peaked in October when water table was likely at its lowest 
elevation in most years

• During a dry autumn, cool temperatures are especially helpful in limiting 
respiration costs and preserving stored carbon

• Conversely, warm temperatures and favorable soil moisture supply in 
October appear very conducive to facilitating nutrient release and uptake, 
prolonging aboveground growth, and reducing carbon reserves  
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Previous-year summer and autumn soil moisture

• Negative correlations between ring width and previous-year July, August, 
and September PDSI were the strongest observed in this study

• Most influential climate-related factor on AWC ring width in GDSNWR

• Five of the top 6 high-growth years of AWC in GDSNWR were preceded 
by a dry cycle with 12 or more consecutive months of mild to severe 
drought conditions

• The other top growth year occurred during a drought but was preceded by 
the driest year of the study period 
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Comparison with other studies - general

• Strong influence of previous-year climatic conditions is not surprising:

Previous-year climatic conditions have a strong effect on ring-width 
variation of conifers in semiarid, cold-temperate, and boreal regions

• However, the sign / direction of the response to previous-year climate 
observed in this study appears to be uncommon

Conifers of the above-referenced settings often exhibit positive correlations 
between ring width and unfavorable conditions in the previous year

In this study, unfavorable climatic conditions in the previous year were 
dominant factors in producing wide rings in the following year



99

Comparison with other studies - Southeast

• Significant, negative correlations between ring width and previous-year 
summer or autumn PDSI were reported for:

Longleaf pine in Alabama, South Carolina, Texas, and Virginia

Eastern red cedar in Virginia

• Significant, negative correlations between ring width and previous-year 
summer or autumn rainfall were reported for:

Loblolly pine and red maple in GDSNWR

• Like AWC, all of these species do not exhibit determinate shoot growth
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Comparison with other studies - AWC

• This was only the fourth study that analyzed the effect of previous-year soil 
moisture on AWC radial growth (and the first to use PDSI)

AWC in Rhode Island using hydrologic variables (Golet and Lowry 1987) 

AWC in GDSNWR and ARNWR using rainfall (Merry 2005; Seim 2005)

• The strongest similarity between this study and those by Merry and Seim 
was the negative correlation between ring width and previous-year late-
summer soil moisture / rainfall

• Consistent with the negative relationship between radial growth and 
previous-year summer water table elevation reported in Rhode Island
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Correlations between RESID and mean temperature
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Correlations between RESID and mean temperature
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Same site in GDS, timber harvested
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